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9.1 Let (M, g) be an n-dimensional Riemannian manifold. Recall that, in any local coordinate
system, the Ricci tensor satis�es

Ricij = gαβRαiβj.

(a) Show that the Ricci curvature is symmetric, i.e. for any X, Y ∈ Γ(M):

Ric(X, Y ) = Ric(Y,X).

(b) The symmetries of the Riemann curvature tensor imply that not all components Rijkl of
the Riemann tensor are independent of each other. How many independent components
does R have when n = 2? Show that, in this case, for any X, Y, Z,W ∈ Γ(M)

R(X, Y, Z,W ) = K ·
(
g(X,Z)g(Y,W )− g(X,W )g(Y, Z)

)
,

where K is the sectional curvature of M (since dimM = 2, there is only one tangent
2-plane passing through each point p ∈ M; hence, in this case, the sectional curvature is
simply a function on M).

(c) How many independent components does R have when n = 3? Show that, in this case,

Rijkl = Ricik gjl − Ricil gjk + Ricjl gik − Ricjk gil −
1

2
S(gikgjl − gjkgil),

where S = gijRicij is the scalar curvature; in particular, the Ricci curvature contains, in
this case, all the information about the Riemann curvature tensor.

Solution. (a) It su�ces to show that, for any p ∈ M and in any local coordinate system (x1, . . . , xn)
around p, we have

Ricij = Ricji

(since Ric(X, Y ) = RicijX
iY j). This follows directly from the de�nition of the Ricci curvature tensor

Ricij = gabRaibj,

together with the fact that gab = gba (since the matrix of components of g is symmetric) and the
identity Raibj = Rbjai.

(b) In any dimension, the components of the Riemann curvature tensor in any local coordinate
system satisfy the following symmetries:

Rabcd = −Rbacd = −Rabdc, (1)

Rabcd = Rcdab.

In the special case when n = 2, the indices take the values {1, 2}. In view of the �rst symmetry above,
we know that any component Rabcd with a = b or c = d has to vanish identically. Therefore, the only
components of R that can be non-zero have to include two indices equal to 1 and the other two equal
to 2 (and the �rst two or the last two indices cannot be the same). Combining the two symmetries
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(1), we infer that the only independent component of R is R1212, since all other components of R are
either identically 0 or are equal to ±R1212 (obtained by a sequence of permutations of the indices of
R1212 of the type that appear in (1)).

Let p ∈ M. We want to show that, for any X, Y, Z,W ∈ TpM,

R(X, Y, Z,W )|p = K|p ·
(
g|p(X,Z)g|p(Y,W )− g|p(X,W )g|p(Y, Z)

)
. (2)

Since this is a geometric relation, it su�ces to show that it is true in a frame {e1, e2} of TpM. To
this end, let us pick {e1, e2} to be an orthonormal frame of (TpM, g|P ) (so that g|p(ei, ej) = δij).
Recall that, for such a frame, the sectional cruvature K|p satis�es

K|p = R(e1, e2, e1, e2).

Therefore, we have

R(e1, e2, e1, e2) = K|p ·
(
g|p(e1, e1)g|p(e2, e2)− g|p(e1, e2)g|p(e1, e2)

)
,

i.e. (2) is true for X = Z = e1, Y = W = e2. From this, we can directly infer that (2) is
true when X, Y, Z,W ∈ {e1, e2} using the fact that the right hand side of (2) satis�es the same
symmetries (1) as the left hand side with respect to permutations of the arguments. Finally, (2) for
any X, Y, Z,W ∈ TpM follows by expressing each of those vectors in the basis {e1, e2} and using the
multilinearity of (2) in all of its arguments.

(c) In the case when n = 3, we want to show that Rabcd has at most 6 independent compoents (as
many as the Ricci tensor, whose components form a 3 × 3 symmetric matrix). Using the fact that
Rabcd satis�es the symmetries (1), we deduce that, for a non-zero component Rabcd, no three indices
can be the same number (and we cannot have a = b or c = d). Since a, b, c, d take the values {1, 2, 3},
this observation allows us to form a list of components Rabcd from which all non-zero components
can be computed via the set of symmetries (1):

1. Components with two indices equal to �1�: R1212, R1213, R1313 (all other non-zero components
in this category can be obtained from one of these three via a permutation of the indices of the
type appearing in the symmetries (1)).

2. Components with one index equal to �1�: R1232, R1323 (as before, all other non-zero components
with one index equal to �1� can be obtained from these two via a permutation of the indices of
the type appearing in the symmetries (1)).

3. Components with no index equal to �1�: R2323 (same as before; this case is essentially the same
as for n = 2).

All in all, we infer that every non-zero component Rabcd is equal to ±1 times one of the 6 components
R1212, R1213, R1313, R1232, R1323 and R2323. Since the symmetries of the Riemann tensor only refer to
permutation of the indices and none of these components is simply an index-permutation of another
one, we infer that Rabcd in the case n = 3 has precisely 6 independent components.
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We will now show how the Riemann tensor can be computed in terms of the Ricci tensor when
n = 3. We want to show that, in any local coordinate system,

Rijkl = Ricik gjl − Ricil gjk + Ricjl gik − Ricjk gil −
1

2
S(gikgjl − gjkgil). (3)

Even though the above relation looks coordinate dependent, it is not; you can easily check that it is
equivalent to the coordinate-free statement that, for any p ∈ M and any X, Y, Z,W ∈ TpM,

R(X, Y, Z,W ) = Ric(X,Z) g(Y,W )− Ric(X,W ) g(Y, Z) + Ric(Y,W ) g(X,Z)− Ric(Y, Z) g(X,W )

− 1

2
S
(
g(X,Z)g(Y,W )− g(Y, Z)g(X,W )

)
.

Therefore, for any p ∈ M, it su�ces to establish (3) at p with respect to a single well-chosen
coordinate system around p. To this end, let us choose a normal coordinate system (x1, x2, x3)
around p (so that gij|p = δij and ∂igjk|p = 0). In these coordinates, we have seen in class that the
components of the Riemann curvature tensor R|p at p take the simple form

Rabcd|p =
1

2

(
∂b∂cgad|p − ∂a∂cgbd|p + ∂a∂dgbc|p − ∂b∂dgac|p

)
.

Therefore,

Ricab|p
.
= gij|pRaibj|p = δijRaibj|p

=
1

2

3∑
i=1

(
∂i∂bgia|p + ∂i∂agib|p − ∂a∂bgii|p − ∂2

i gab|p
)

and

S|p
.
= gij|pRicij|p =

3∑
i,j=1

(
∂i∂jgij|p − ∂2

i gjj|p
)
.

Using the above expressions, verifying the relation

Rabcd|p =
(
Ricac gbd − Ricad gbc + Ricbd gac − Ricbc gad −

1

2
S(gacgbd − gbcgad)

)
|p

= Ricac|p δbd − Ricad|p δbc + Ricbd|p δac − Ricbc|p δad −
1

2
S|p(δacδbd − δbcδad)

is a straightforward (yet somewhat tedious) algebraic task (one only needs to verify this for the 6
independent components Rabcd identi�ed earlier).

9.2 Let (M, g) be a smooth Riemannian manifold and let ϕ : (−ϵ, ϵ)× [0, 1] → M be a smooth map
such that, for each s ∈ (−ϵ, ϵ), γs = ϕ(s, ·) is a geodesic. De�ne the vector �elds T = dϕ( ∂

∂t
)

and X = dϕ( ∂
∂s
). Prove that

∇T∇TX = −R(X,T )T.

Intuitively, X measures the in�nitesimal separation between nearby geodesics; thus, the Rie-
mann curvature tensor �measures� the relative acceleration of nearby geodesics (compare the
behaviour of nearby geodesics in the Euclidean plane vs. the round sphere).
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Solution. Since γs is assumed to be a geodesic for each s, the vector �eld T
.
= ϕ∗

∂
∂t

= γ̇s satis�es

∇TT = 0.

Moreover, as we have shown in class, the variation vector �eld X and the tangent vector �eld T
commute with each other, since

[X,T ] = [ϕ∗
∂

∂s
, ϕ∗

∂

∂t
] = ϕ∗[

∂

∂s
,
∂

∂t
] = 0.

Therefore, the de�nition of the Riemann curvature tensor and the fact that ∇ is torsion-free imply
that:

R(X,T )T = ∇X∇TT −∇T∇XT −∇[X,T ]T

= 0−∇T∇XT − 0

= −∇T

(
∇TX + [X,T ]

)
= −∇T∇TX,

i.e. we obtain the desired relation.

9.3 Let (M, g) be a smooth Riemannian manifold. For any smooth curve γ : [0, 1] → M and any
t1, t2 ∈ [0, 1], we will denote with Pγ(t1)→γ(t2) : Tγ(t1)M → Tγ(t2)M the parallel transport along
γ from γ(t1) to γ(t2) (with respect to the Levi-Civita connection).

(a) Prove that, for any vector �eld Z along γ, as τ → 0:

lim
τ→0

Z|t=0 − Pγ(τ)→γ(0)Z|t=τ

τ
= −∇γ̇(0)Z.

Hint: Contruct a frame {ei}ni=1 of vector �elds along γ which are parallel translated, and

express Z in components with respect to ei.

*(b) Let ϕ : [−1, 1]× [−1, 1] → M be a smooth map with p = ϕ(0, 0) and let X = ϕ∗( ∂
∂x1 ) and

Y = ϕ∗( ∂
∂x2 ). For any s1, s2 ∈ (0, 1), we will consider the rectangular loop γ(s1,s2) starting

and ending at p which is of the form γ(s1,s2) = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1(t) = ϕ(t, 0), t ∈ [0, s1],

γ2(s) = ϕ(s1, s), s ∈ [0, s2],

γ3(t) = ϕ(s1 − t, s2), t ∈ [0, s1],

γ3(s) = ϕ(0, s2 − s), s ∈ [0, s2].

For any Z ∈ TpM, let Z(s1,s2) ∈ TpM be the tangent vector obtained after parallel
transporting Zp around γ, i.e. following the successive mappings

Z →Z ′ = Pγ1(0)→γ1(s1)Z → Z ′′ = Pγ2(0)→γ2(s2)Z
′

→ Z ′′′ = Pγ3(0)→γ3(s1)Z
′′ → Z(s1,s2) = Pγ4(0)→γ4(s2)Z

′′′.
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Show that

lim
s2→0

lim
s1→0

Z(s1,s2) − Z

s1s2
= −R(X, Y )Z.

Thus, the Riemann curvature tensor quanti�es the failure of the parallel transport around
small closed loops to be the identity map.

Solution. (a) Let {ξα}nα=1 be a basis of orthonormal tangent vectors in Tγ(0)M with respect to

g|γ(0) and let {eα}nα=1 be a set of vector �elds along γ such that eα is the parallel translate of ξα
(i.e. eα|t=0 = eα and ∇γ̇eα = 0. Since

d

dt
g(eα, eβ)|γ(t) = g(∇γ̇eα, eβ) + g(eα,∇γ̇eβ) = 0,

we infer that, for any t ∈ [0, 1], {eα|γ(t)}nα=0 is an orthonormal base for Tγ(t)M.
Any vector �eld Z along γ can be expressed, with respect to the basis {eα}nα=0 as Z = Zαeα

for some (unique) component functions Zα : [0, 1] → R, α = 0, . . . , n. In this basis, the covariant
derivative and the parallel translation of a vector �eld become a standard derivative and translation,
respectively, of the component functions; in particular, we can readily compute:

∇γ̇Z = ∇γ̇(Z
αeα) =

dZα

dt
eα + Zα∇γ̇eα =

dZα

dt
eα.

Moreover, since, for any t1, t2 ∈ [0, 1], we have Pγ(t1)→γ(t2)eα|γ(t1) = eα|γ(t2), the linearity of the parallel
transport operator implies that if v = vαeα|γ(t1) is an element of Tγ(t1)M, then

Pγ(t1)→γ(t2)v = vαeα|γ(t2).

We can thus calculate:

lim
τ→0

Z|t=0 − Pγ(τ)→γ(0)Z|t=τ

τ
= lim

τ→0

Zα(0)eα|t=0 − Pγ(τ)→γ(0)(Z
α(τ)eα|t=τ )

τ

= lim
τ→0

Zα(0)eα|t=0 − Zα(τ)eα|t=0

τ

= −dZα

dt
(0)eα

= −∇γ̇(0)Z.

Moreover, using Taylor's theorem to express for any t ∈ [0, 1]:

Zα(t) = Zα(0) +
dZα

dt
(0)t+

1

2

d2Zα

dt2
(ξ(t))t2

for some ξ(t) ∈ [0, t] depending smoothly on t, we also have the following useful expression for the
parallel transport operator:

Pγ(t)→γ(0)Z = Z|γ(0) +∇γ̇(0)Z · t+ V [t] · t2 (4)
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for some smooth function V : t → V [t] ∈ Tγ(0)M with V α[t] = 1
2
d2Zα

dt2
(ξ(t)); note that

V [t]
t→0−−→ 1

2
∇γ̇∇γ̇Z|t=0.

(b) For ϕ : [−1, 1] × [−1, 1] → M as in the statement of the exercise, we will denote by γs(·)
the family of curves t → ϕ(s, t) and by γ′

t(·) the family of curves s → ϕ(s, t) in M. Note that
X|ϕ(s,t) = γ̇s(t) and Y |ϕ(s,t) = γ̇′

t(s). For any vector �eld W de�ned along the image of the map ϕ and
any h ∈ (−1, 1), we will de�ne the vector �elds P(h)W on ϕ

(
[−1, 1]× [−1 + |h|, 1− |h|]

)
and P′(h)W

on ϕ
(
[−1+ |h|, 1−|h|]× [−1, 1]

)
to be the parallel translates of W along γs and γ′

t, respectively, with
step h, i.e. (

P
(h)W

)
|ϕ(s,t) = Pγs(t−h)→γs(t)W and

(
P
′(h)W

)
|ϕ(s,t) = Pγ′

t(s−h)→γ′
t(s)

W.

Note that, applying (4) for γs and γ′
t, we obtain(

P
(h)W

)
|ϕ(s,t) = W |ϕ(s,t) − (∇XW )|ϕ(s,t)h+ V1[W ;h]|ϕ(s,t)h2(

P
′(h)W

)
|ϕ(s,t) = W |ϕ(s,t) − (∇YW )|ϕ(s,t)h+ V2[W ;h]|ϕ(s,t)h2

for some smooth vector �elds V1[W ;h], V2[W ;h] depending smoothly on h and W and satisfying

V1[W,h]
h→0−−→ 1

2
∇X∇XW, V2[W,h]

h→0−−→ 1

2
∇Y∇YW. (5)

Using the above formulas, we can compute for any s1, s2 > 0

P
′(s2)P(s1)Z = P

′(s2)
(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
=

(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
−

(
∇Y

(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

))
s2

+ V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
s22

= Z − (∇XZ)s1 − (∇YZ)s2 + (∇Y∇XZ)s1s2

+ V1[Z; s1]s
2
1 + V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
s22 − (∇Y V1[Z; s1])s

2
1s2

and, similarly,

P
(s1)P

′(s2)Z = Z − (∇XZ)s1 − (∇YZ)s2 + (∇X∇YZ)s1s2

+ V2[Z; s2]s
2
2 + V1

[(
Z − (∇YZ)s2 + V2[Z; s2]s

2
2

)
; s2

]
s21 − (∇XV2[Z; s2])s

2
2s1.

Therefore, we compute

P
′(s2)P(s1)Z − P

(s1)P
′(s2)Z

=
(
∇Y∇XZ −∇X∇YZ

)
s1s2

+
(
V1[Z; s1]− V1

[(
Z − (∇YZ)s2 + V2[Z; s2]s

2
2

)
; s2

])
s21

+
(
V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
− V2[Z; s2]

)
s22
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−
(
(∇Y V1[Z; s1])− (∇XV2[Z; s2])

)
s22s1.

In particular, using (5) for the second and third lines in the right hand side, we have:

lim
(s1,s2)→(0,0)

P
′(s2)P(s1)Z − P

(s1)P
′(s2)Z

s1s2
= ∇Y∇XZ −∇X∇YZ = R(Y,X)Z.

Using the fact that P(−h)
P
(h) = Id (and similarly for P′), we have

Z(s1,s2)|p − Z|p =
(
P
′(−s2)P

(−s1)P
′(s2)P(s1)Z

)
|ϕ(0,0) − Z|ϕ(0,0)

=
(
P
′(−s2)P

(−s1)
[
P
′(s2)P(s1)Z − P

(s1)P
(′s2)Z

])∣∣∣
ϕ(0,0)

Therefore, since limh→0 P
(−h) = Id (and similarly for P′), we obtain the required formula:

lim
(s1,s2)→(0,0)

Z(s1,s2)|p − Z|p
s1s2

= R(Y,X)Z|p.
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