EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 9 Riemannian Geometry 20 Apr. 2025

9.1 Let (M,g) be an n-dimensional Riemannian manifold. Recall that, in any local coordinate
system, the Ricci tensor satisfies
Ricij = g“’BRaigj.

(a) Show that the Ricci curvature is symmetric, i.e. for any X,Y € I'(M):

Ric(X,Y) = Ric(Y, X).

(b) The symmetries of the Riemann curvature tensor imply that not all components R;j; of
the Riemann tensor are independent of each other. How many independent components
does R have when n = 2?7 Show that, in this case, for any X, Y, Z, W € I'(M)

R(X,Y,Z,W) =K - (g(X, Z2)g(Y,W) — g(X,W)g(Y, Z)),

where K is the sectional curvature of M (since dimM = 2, there is only one tangent
2-plane passing through each point p € M; hence, in this case, the sectional curvature is
simply a function on M).

(¢) How many independent components does R have when n = 3?7 Show that, in this case,
. . . . 1
Riji = Ricy, gji — Ricy gji + Ricy ga — Ricjg g — §S(gikgjl — GjkGil);

where S = ¢g"Ric;; is the scalar curvature; in particular, the Ricci curvature contains, in
this case, all the information about the Riemann curvature tensor.

Solution. (a) It suffices to show that, for any p € M and in any local coordinate system (z',. .., z")
around p, we have

RiCij = RiCﬂ
(since Ric(X,Y) = Ric;; X"Y7). This follows directly from the definition of the Ricci curvature tensor
Ricij = g™ Rua;,
together with the fact that g? = ¢* (since the matrix of components of g is symmetric) and the
identity Raibj = ijm‘.

(b) In any dimension, the components of the Riemann curvature tensor in any local coordinate
system satisfy the following symmetries:

Rabcd = _Rbacd = _Rabdca (1)
Rabcd = Rcdab'

In the special case when n = 2, the indices take the values {1,2}. In view of the first symmetry above,
we know that any component Rg.q with a = b or ¢ = d has to vanish identically. Therefore, the only
components of R that can be non-zero have to include two indices equal to 1 and the other two equal
to 2 (and the first two or the last two indices cannot be the same). Combining the two symmetries
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(1), we infer that the only independent component of R is Rja19, since all other components of R are
either identically 0 or are equal to £R1912 (obtained by a sequence of permutations of the indices of
Ry912 of the type that appear in (1)).

Let p € M. We want to show that, for any X,Y, Z, W € T,M,

R(X,Y, Z,W)ly = Kl (9lp(X, Z)gl, (Y, W) — g|,(X, W)gl,(Y. Z)). (2)

Since this is a geometric relation, it suffices to show that it is true in a frame {e;,es} of T,M. To
this end, let us pick {ej, ez} to be an orthonormal frame of (7,M, g|p) (so that g|,(e;, ;) = d;5).
Recall that, for such a frame, the sectional cruvature K|, satisfies

K|p = R(€1, €9, €1, 62).
Therefore, we have

R(ei, e, e1,69) = K|p ) (9|p(€1, 61)9|p(62762) - 9|p(617€2)9|p(€1762))7

ie. (2) is true for X = Z = e;, Y = W = e5. From this, we can directly infer that (2) is
true when X, Y, Z, W € {e;,es} using the fact that the right hand side of (2) satisfies the same
symmetries (1) as the left hand side with respect to permutations of the arguments. Finally, (2) for
any X,Y, Z, W € T, M follows by expressing each of those vectors in the basis {e;, e2} and using the
multilinearity of (2) in all of its arguments.

(c) In the case when n = 3, we want to show that R, has at most 6 independent compoents (as
many as the Ricci tensor, whose components form a 3 x 3 symmetric matrix). Using the fact that
Rapeq satisfies the symmetries (1), we deduce that, for a non-zero component R4, no three indices
can be the same number (and we cannot have a = b or ¢ = d). Since a, b, ¢, d take the values {1, 2, 3},
this observation allows us to form a list of components R..q from which all non-zero components
can be computed via the set of symmetries (1):

1. Components with two indices equal to “1”: Rjs19, Ri213, Ri313 (all other non-zero components
in this category can be obtained from one of these three via a permutation of the indices of the
type appearing in the symmetries (1)).

2. Components with one index equal to “1”: Ry232, Ri323 (as before, all other non-zero components
with one index equal to “1” can be obtained from these two via a permutation of the indices of
the type appearing in the symmetries (1)).

3. Components with no index equal to “1”: Ra3e3 (same as before; this case is essentially the same
as for n = 2).

All in all, we infer that every non-zero component Rq.q is equal to &1 times one of the 6 components
Ri212, Ri213, Ri313, R1232, R1323 and Raze3. Since the symmetries of the Riemann tensor only refer to
permutation of the indices and none of these components is simply an index-permutation of another
one, we infer that R, in the case n = 3 has precisely 6 independent components.
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We will now show how the Riemann tensor can be computed in terms of the Ricci tensor when
n = 3. We want to show that, in any local coordinate system,

) ) ) . 1
Rijr = Ricy gji — Ricy gjr + Ricy gi — Ricjr ga — §S(gik9jl — gjkGit)- (3)

Even though the above relation looks coordinate dependent, it is not; you can easily check that it is
equivalent to the coordinate-free statement that, for any p € M and any XY, Z, W € T, M,

R(X,Y,Z,W) = Ric(X, Z) g(Y,W) — Ric(X, W) (Y, Z) + Ric(Y, W) ¢(X, Z) — Ric(Y, Z) g(X, W)
— %S(g(X, 2)9(Y, W) —g(Y, Z)g(X, W))

Therefore, for any p € M, it suffices to establish (3) at p with respect to a single well-chosen
coordinate system around p. To this end, let us choose a normal coordinate system (z!,2?% x3)
around p (so that g;;|, = d;; and 9;g;k|, = 0). In these coordinates, we have seen in class that the

components of the Riemann curvature tensor R|, at p take the simple form

1
Rabcd|p - 5 (8bacgad’p - aaacgballp + 8aadgbc’p - 8badgac|p> .

Therefore,
Ricaplp = 9" |p Raivlp = 67 Raislp
3
1
=5 Z <8iabgia|p + 0:0a9iblp — 0uObYiilp — 8izgab|p>
i=1
and

3
Sly = g”[pRicil, = Y (aiajgijlp - afgjﬂp)

ij=1

Using the above expressions, verifying the relation

. . . . 1
Rabcd‘p = (Rlcac 9bd — Rlcad Gbe + Rlcbd Gac — Rlcbc Gad — ES(gacgbd - gbcgad)) ‘p

. . . . 1
= Rlcac|p 5bd - Rlcad|p 5bc + R].de|p 5ac - Rlec|p 6ad - §S|p(5ac(5bd - 5bc5ad)

is a straightforward (yet somewhat tedious) algebraic task (one only needs to verify this for the 6
independent components Ry identified earlier).

9.2 Let (M, g) be a smooth Riemannian manifold and let ¢ : (—¢,€) x [0, 1] — M be a smooth map
such that, for each s € (—¢,¢€), 75 = ¢(s,) is a geodesic. Define the vector fields T = d¢(%)
and X = d¢(Z). Prove that

VrVrX = —-R(X,T)T.

Intuitively, X measures the infinitesimal separation between nearby geodesics; thus, the Rie-

mann curvature tensor “measures” the relative acceleration of nearby geodesics (compare the

behaviour of nearby geodesics in the Euclidean plane vs. the round sphere).
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Solution. Since 7, is assumed to be a geodesic for each s, the vector field T = gb*% = 7, satisfies
VT =0.
Moreover, as we have shown in class, the variation vector field X and the tangent vector field T

commute with each other, since

0 0 0 0
Therefore, the definition of the Riemann curvature tensor and the fact that V is torsion-free imply
that:

[Xv T] = [Qb* = 0.

R(X,T)T = VyxVsT — VoVxT — Vixp T

=0-—VyVxT -0
= —Vr(VrX + [X,T])
— _VTVTX7

i.e. we obtain the desired relation.

9.3 Let (M, g) be a smooth Riemannian manifold. For any smooth curve 7 : [0,1] — M and any
t1,t2 € [0, 1], we will denote with P,y @ Tyt)M — Ty, M the parallel transport along
v from (t1) to y(t2) (with respect to the Levi-Civita connection).

(a) Prove that, for any vector field Z along v, as 7 — 0:

lim Zt=0 — Pynsv@Z |i=r

T—0 T

==V Z.

Hint: Contruct a frame {e;}!_, of vector fields along ~y which are parallel translated, and
express Z in components with respect to e;.

*(b) Let ¢: [—1,1] x [-1,1] — M be a smooth map with p = ¢(0,0) and let X = ¢*(5%) and
Y = ¢*(5%). For any s1, s, € (0,1), we will consider the rectangular loop 7, s,) starting
and ending at p which is of the form ~(,, s,) = 71 U2 U3 U4, where

Ti(t) = 6(t,0), te€0,s1],
Y2(s) = ¢(s1,5), s €0, 8],
v3(t) = P(s1 — t,s9), t€]0,s],
73(8) = ¢(0,85 — 5), s € [0, sa].

For any Z € T,M, let Z, s,) € TyM be the tangent vector obtained after parallel
transporting Z, around v, i.e. following the successive mappings

AR A— P-4 = Z" = [P’Y2(0)—>’)’2(52)Z/
g — IP’ys(O)%’yg(SQZ” N Z(sl,sg) = [P,y4(0)a’y4(s2)Z///.
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Show that
. . Z(s1,82) - Z o
lim lim —¢2%2) 2 — _R(X,Y)Z.
s2—05s1—0 S1S2

Thus, the Riemann curvature tensor quantifies the failure of the parallel transport around
small closed loops to be the identity map.

Solution. (a) Let {&,}7_; be a basis of orthonormal tangent vectors in T, M with respect to

gy and let {e,}7_; be a set of vector fields along v such that e, is the parallel translate of &,
(i.e. eqlt=0 = €o and Ve, = 0. Since

d
—g(eases)lyt) = 9(Viea, e5) + glea, Vies) = 0,

dt
we infer that, for any ¢ € [0, 1], {ea|y ) }n_o is an orthonormal base for T’ M.

Any vector field Z along « can be expressed, with respect to the basis {e,}!'_, as Z = Z%,
for some (unique) component functions Z, : [0,1] — R, @ = 0,...,n. In this basis, the covariant
derivative and the parallel translation of a vector field become a standard derivative and translation,
respectively, of the component functions; in particular, we can readily compute:

aze aze

ViZ =Vi(Z%y) = ——eq + Z°Viey = ——

Moreover, since, for any t1,t, € [0, 1], we have P ) (t2)€alv(t1) = €alq(ts), the linearity of the parallel
transport operator implies that if v = v%eq|,(,) is an element of T’y M, then

Poyt1)=(t2)V = V" €aly(ta)-

We can thus calculate:

lim Z’t:O - [P'y(r)—>'y(0)Z|t:T — lim Za(o)ea‘t:() - [PW(T)—W(O)(ZQ(T)ea‘t:T>
T—0 T T7—0 T
i 25O a0 = Z°(ealic

T—0 T

= (0)eq
= —Vi0Z.
Moreover, using Taylor’s theorem to express for any ¢ € [0, 1]:

az* 1d?z~
)+ 5 (€)1

Ze(t) = Z*(0) +

for some £(t) € [0,t] depending smoothly on ¢, we also have the following useful expression for the
parallel transport operator:

Prysr0Z = Zlyo) + Vi Z -t + VIt] - (4)
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for some smooth function V' : t — V[t] € T,y M with V*[t] = %dZtZ; (&(t)); note that

1
v =% 5 ViViZli-o.

(b) For ¢ : [-1,1] x [-1,1] — M as in the statement of the exercise, we will denote by ~,(+)
the family of curves ¢ — ¢(s,t) and by ~/(-) the family of curves s — ¢(s,t) in M. Note that
X,y = ¥s(t) and Y4500 = ¥4(s). For any vector field W defined along the image of the map ¢ and
any h € (—1,1), we will define the vector fields P"W on ¢([—1,1] x [-1+ |h|,1 — |h[]) and P"»W
on ¢([—1+|h],1—|h|] x [~1,1]) to be the parallel translates of W along 7, and ;, respectively, with
step h, i.e.

(POW) o) = Prutt-ryomaoW  and (PW) logsty = Prysmmy gy W-
Note that, applying (4) for 7, and ;, we obtain
(PYW) o5,y = Wlotsy = (VxW)lggs.ph + VAW h[g(s.0h®
(P W) o) = Wlotsy = (VyW)lggsnh + Vo[ W b g5 h?
for some smooth vector fields Vi [W; h], Vo[W; h] depending smoothly on h and W and satisfying

h—o 1 hoo 1

Wi[W, h| — §VXVXW, WLo[W, h] — §VYVYW (5)
Using the above formulas, we can compute for any s;,s9 > 0
PeIpl) 7 = P2 (7 — (Vx Z)s1 + Vi[Z; 51]s7)
= (Z = (Vx2)s1 + Vi[Z; s1]s]) — <VY(Z —(VxZ)s1 + W[ Z; sﬂs%))Sz

+ VQ[(Z — (Vx2)s1 + Vi[Z; 51]5%)3 82]53
=7 — (VXZ)31 — (VyZ)SQ + (VYVXZ)Slsg
+ VilZ; s1)st + Vo[ (Z = (VxZ)s1 + Vi[Z; 51]s7); s2) 55 — (VyVA[Z; 51])s1s0

and, similarly,

PEIPD 7 = Z — (VxZ)sy — (VyZ)sy + (VxVy Z)sys9
+ ValZ; so)s5 + Vi[(Z — (Vy Z) sy + Va|Z; 55]53); 2] 51 — (Vx Va[Z; 53] 5351

Therefore, we compute

p/(s2)p(s1) 7 _ plsi)p/(s2) 7
= (VvaZ — VXVyZ)Slsz
+ (Vl[Z; s1]—W [(Z —(VyZ)se + V| Z; 52]53); sﬂ)sf

+ (Vz[(Z — (Vx2)s1 + Vi[Z; 51)s7); 82| — ValZ; 52])53
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— (VW WlZis1]) = (VxValZs sa]) ) s
In particular, using (5) for the second and third lines in the right hand side, we have:

P/(s2)p(s1) 7 _ plsi)prls2) 7
lim = Vyvxz — VvaZ = R(Y, X)Z

(s1,82)—(0,0) 51592

Using the fact that PCMP® = Id (and similarly for P'), we have

Zisrso)lp = Zlp = (P HPTIPEIPEIZ) 00) = Zlo00)

_ <|]D’(*32)[|3(*31) [H:/<sa>ﬂa(s1> 7 _ plsy)plsz) Z])‘
#(0,0)

Therefore, since limy,_,o P" = 1d (and similarly for P’), we obtain the required formula:

lim Z(S1782)|p - Z|

(s1,82)—(0,0) 51892

L R(Y, X)Z],
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